On a series of Gorenstein cyclic quotient singularities admitting a unique projective crepant resolution

نویسندگان

  • Dimitrios I. Dais
  • Martin Henk
چکیده

Let G be a finite subgroup of SL(r,C). In dimensions r = 2 and r = 3, McKay correspondence provides a natural bijection between the set of irreducible representations of G and a cohomology-ring basis of the overlying space of a projective, crepant desingularization of C/G. For r = 2 this desingularization is unique and is known to be determined by the Hilbert scheme of the Gorbits. Similar statements (including a method of distinguishing just one among all possible smooth minimal models of C/G), are very probably true for all G’s ⊂ SL(3,C) too, and recent Hilbert-scheme-techniques due to Ito, Nakamura and Reid, are expected to lead to a new fascinating uniform theory. For dimensions r ≥ 4, however, to apply analogous techniques one needs extra modifications. In addition, minimal models of C/G are smooth only under special circumstances. C/ (involution), for instance, cannot have any smooth minimal model. On the other hand, all abelian quotient spaces which are c.i.’s can always be fully resolved by torus-equivariant, crepant, projective morphisms. Hence, from the very beginning, the question whether a given Gorenstein quotient space C/G, r ≥ 4, admits special desingularizations of this kind, seems to be absolutely crucial. In the present paper, after a brief introduction to the existence-problem of such desingularizations (for abelian G’s) from the point of view of toric geometry, we prove that the Gorenstein cyclic quotient singularities of type 1 l (1, . . . , 1, l− (r − 1)) with l ≥ r ≥ 2, have a unique torus-equivariant projective, crepant, partial resolution, which is “full” iff either l ≡ 0 mod (r − 1) or l ≡ 1 mod (r − 1). As it turns out, if one of these two conditions is fulfilled, then the exceptional locus of the full desingularization consists of ⌊ l r−1 ⌋ prime divisors, ⌊ l r−1 ⌋ − 1 of which are isomorphic to the total spaces of PC-bundles over P r−2 C . Moreover, it is shown that intersection numbers are computable explicitly and that the resolution morphism can be viewed as a composite of successive (normalized) blow-ups. Obviously, the monoparametrized singularity-series of the above type contains (as its “first member”) the well-known Gorenstein singularity defined by the origin of the affine cone which lies over the r-tuple Veronese embedding of Pr−1 C .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On crepant resolutions of 2-parameter series of Gorenstein cyclic quotient singularities

An immediate generalization of the classical McKay correspondence for Gorenstein quotient spaces C/G in dimensions r ≥ 4 would primarily demand the existence of projective, crepant, full desingularizations. Since this is not always possible, it is natural to ask about special classes of such quotient spaces which would satisfy the above property. In this paper we give explicit necessary and suf...

متن کامل

2 8 D ec 2 00 5 On the Existence of Crepant Resolutions of Gorenstein Abelian Quotient Singularities in Dimensions ≥ 4 Dimitrios

For which finite subgroups G of SL(r,C), r ≥ 4, are there crepant desingularizations of the quotient space Cr/G? A complete answer to this question (also known as “Existence Problem” for such desingularizations) would classify all those groups for which the high-dimensional versions of McKay correspondence are valid. In the paper we deal with this question in the case of abelian finite subgroup...

متن کامل

All Abelian Quotient C.i.-singularities Admit Projective Crepant Resolutions in All Dimensions All Abelian Quotient C.i.-singularities Admit Projective Crepant Resolutions in All Dimensions

For Gorenstein quotient spaces C d =G, a direct generalization of the classical McKay correspondence in dimensions d 4 would primarily demand the existence of projective, crepant desingularizations. Since this turned out to be not always possible, Reid asked about special classes of such quotient spaces which would satisfy the above property. We prove that the underlying spaces of all Gorenstei...

متن کامل

All Abelian Quotient C.I.-Singularities Admit Projective Crepant Resolutions in All Dimensions

For Gorenstein quotient spaces C/G, a direct generalization of the classical McKay correspondence in dimensions d ≥ 4 would primarily demand the existence of projective, crepant desingularizations. Since this turned out to be not always possible, Reid asked about special classes of such quotient spaces which would satisfy the above property. We prove that the underlying spaces of all Gorenstein...

متن کامل

An introduction to motivic integration

By associating a ‘motivic integral’ to every complex projective variety X with at worst canonical, Gorenstein singularities, Kontsevich [Kon95] proved that, when there exists a crepant resolution of singularities φ : Y → X, the Hodge numbers of Y do not depend upon the choice of the resolution. In this article we provide an elementary introduction to the theory of motivic integration, leading t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997